

ESTUDO COMPARATIVO SOBRE A HIDRÓLISE DA QUERATINA EMPREGANDO QUÍMICA VERDE

Hellen Valéria de Souza¹, Anny Izumi Toma², Douglas Fabiano Costa de Lima³, José Eduardo Gonçalves⁴, Marcia Aparecida Andreazzi⁵

1.2 Alunas do Curso de Medicina Veterinária, Universidade Cesumar – UNICESUMAR, Maringá/PR.
 ¹Bolsista PIBIC/CNPq-UniCesumar. hellenvaleria8@hotmail.com, izumianny@gmail.com
 ³Aluno do Mestrado em Tecnologias Limpas/ Unicesumar, doug20pr@gmail.com.
 4.5 Coorientador e Orientadora, Docentes do Programa de Mestrado em Tecnologias Limpas, UNICESUMAR. Pesquisadores do Instituto Cesumar de Ciência, Tecnologia e Inovação - ICETI. jose.goncalves@unicesumar.edu.br,
 marcia.andreazzi@unicesumar.edu.br

RESUMO

O crescimento na quantidade de animais de estimação gerou um aumento nas atividades dos pet shops, principalmente em serviços de tosa, que promove a higienização e a beleza do animal, mas que resulta na geração de grande quantidade de pelos, denominados resíduos queratinosos e que apresentam elevado potencial poluente. Dessa forma, buscando tornar a cadeia de animais de estimação (pets) sustentável sob o ponto de vista ambiental, uma alternativa para a gestão desses resíduos gerados é a sua hidrólise e posterior utilização em outros processos. Contudo, os métodos de hidrólise, por vezes, empregam vários tipos e quantidades de reagentes químicos que não contribuem com os cuidados ao meio ambiente. Desta forma, o objetivo deste estudo será comparar protocolos de hidrólise da queratina presente nos pelos de cachorros pautados em química verde, empregando papaína presente no extrato de mamão in natura e papaína comercial. O estudo será um delineamento fatorial 3x2x2X3, em que serão utilizados 3 tipos de amostras de pelos de cães adultos: liso, enrolado e eriçado, 2 níveis dos reagentes sulfito de sódio e ureia, 2 fontes de papaína: extrato de mamão verde e comercial, e 3 tempos de hidrólise: 24, 36 e 48 horas. Espera-se com esta pesquisa obter resultados sobre a melhor fonte de papaína para ser empregada no protocolo de hidrólise de pelos de cachorros, visando a obtenção de resíduo hidrolisado que possa ser utilizado em outras técnicas e/ou processos e assim, contribuir com a gestão dos resíduos gueratinosos da cadeia pet.

PALAVRAS CHAVES: Papaína; Pelo de cachorro; Resíduos queratinosos; Hidrólise da queratina.

1 INTRODUÇÃO

A quantidade de animais de estimação, principalmente de cães de companhia, tem aumentado mundialmente (MAZON; MOURA, 2017). Por isso, o rol de serviços ofertados pelos estabelecimentos denominados pet shops também tem aumentado e, dentre os serviços, destaca-se a tosa, que proporciona a higienização e beleza para os animais (PEINADO; FERNANDES, 2012), mas em contrapartida, acarreta na produção de grande quantidade de pelos, ou seja, resíduos queratinosos (ONIFADE et al., 1998; SHAH et al., 2018) com significativo potencial poluente.

Com o intuito de reduzir o impacto ambiental dos pelos oriundos da tosa, pesquisadores têm buscado diferentes formas de utilização desses resíduos, todavia, algumas pesquisas tem mostrado a necessidade de que esses resíduos sejam previamente hidrolisados, a fim de se obter melhores resultados quanto ao seu uso, sobretudo como biofertilizante (MACHADO et al., 2020).

Contudo, os métodos de hidrólise empregados fazem o uso de grandes quantidades e diferentes reagentes químicos, não sendo condizentes com as questões de cuidado ambiental. Assim, se faz necessário a busca por técnicas de hidrólise que considerem as questões ambientais, pautadas, sobretudo, em química verde.

A papaína é uma enzima proteolítica, obtida a partir do extrato de mamão verde (*Cariaca papaya*) amplamente empregada em técnicas laboratoriais verdes, desse modo, estudos que comparem a eficiência do uso da papaína natural com a papaína comercial

na hidrólise da queratina existente nos pelos de cachorros podem contribuir com uma nova rota para a destinação dos resíduos queratinosos da cadeia pet.

Assim, o objetivo deste estudo será comparar o grau de hidrólise de pelos de cachorros, submetidos a processo de hidrólise baseado em química verde, empregando papaína natural e comercial, visando a obtenção de resíduo hidrolisado que possa ser utilizado em outras técnicas e/ou processos e assim, contribuir com a gestão dos resíduos queratinosos da cadeia pet.

2 METODOLOGIA

O estudo será um delineamento fatorial 3x2x2x3, em que serão utilizados 3 tipos de amostras de pelos de cães adultos: liso, enrolado e eriçado, 2 níveis dos reagentes, 2 fontes de papaína e 3 tempos de hidrólise.

Os ensaios de hidrólise enzimática serão realizados no Laboratório Interdisciplinar de Análise Químicas e Biológicas (LIABQ), da Unicesumar.

Antes de serem submetidas à hidrólise, as amostras de pelo serão lavadas em água corrente 3 vezes e após, serão secadas em estufa a 40°C durante 72 horas, revolvendo a cada 4 a 6 horas.

Após a secagem, amostras de 1 grama de pelo serão transferidas para erlenmeyer de 125 mL (em triplicata), devidamente identificados. Em seguida, serão adicionados 60 mL de água destilada, o sulfito de sódio, a ureia e o extrato de mamão conforme cada ensaio (Tabela 1), seguindo o preconizado por Surek, Bedendo e Krabbe (2018). Como fonte de papaína natural, será obtido o extrato de mamão verde, triturando-se em liquidificador a porção mais externa e a casca do mamão verde (Carica papaya). Como papaína comercial, será empregada a papaína Merck©, Hidrossolúvel 30.000 U. USP/mg para fins bioquímicos EC 3.4.22.2.

Os erlenmeyers serão colocados em incubadora shacker com movimento recíproco com 100 rotações por minuto (RPM) e temperatura de 40°C durante a hidrólise. Serão preparados tubos em triplicata, os quais serão retirados nos tempos de 24h, 36h e 48 horas para cálculo de porcentagem de matéria fragmentada. Para tanto, a matéria sólida será filtrada em papel filtro e o resíduo sólido será seco em estufa a 65°C durante 72 horas e o grau de hidrólise será avaliado visualmente.

Tabela 1. Níveis dos reagentes e tempo de hidrólise para cada tipo de pelo que será analisado: liso, ericado e ondulado.

Erlenmeyer	Extrato de mamão verde (g/L)	Papaína comercial (g/L)	Sulfito de sódio (g/L)	Ureia (g/L)	Tempo de hidrólise
1.	20		9,5	94	24
2.	20		9,5	70	24
3.	20		7,5	70	24
4.	20		7,5	94	24
5.	30		9,5	94	24
6.	30		9,5	70	24
7.	30		7,5	70	24
8.	30		7,5	94	24
9.		3,5	7,5	70	24
10.		3,5	7,5	94	24
11.		3,5	9,5	70	24
12.		3,5	9,5	94	24
13.		5	7,5	70	24

94 70	24
70	
, ,	24
9,4	24
94	36
70	36
70	36
94	36
94	36
70	36
70	36
94	36
70	36
94	36
70	36
94	36
70	36
94	36
70	36
9,4	36
94	48
70	48
70	48
94	48
94	48
70	48
70	48
94	48
70	48
94	48
70	48
94	48
70	48
94	48
70	48
9,4	48
	94 70 70 94 94 70 70 94 70 94 70 94 70 94 70 94 70 94 70 70 94 70 94 70 94 70 94 70 94 70 94 70 94 70 94 70 94 70 94 70 94 70 94 70

3 **RESULTADOS ESPERADOS**

Espera-se com esta pesquisa obter resultados sobre a melhor fonte de papaína para ser empregada no protocolo de hidrólise de pelos de cachorros, visando a obtenção de resíduo hidrolisado que possa ser utilizado em outras técnicas e/ou processos e assim, contribuir com a gestão dos resíduos queratinosos da cadeia pet.

REFERÊNCIAS

MACHADO, A. A.; ANDREAZZI, M.; ZAVATINI, F.; MARIANO, C.E.P.; SILVA, V. E. G. Resíduos queratinosos: um problema ambiental. Educação ambiental em ação, v. 19, p. 1, 2020.

MAZON, M. S.; MOURA, W.G. Cachorros e humanos: Mercado de rações pet em perspectiva sociológica. **Civitas, Revista de Ciências Sociais**. v.17, n.1, p.138-158, 2017.

ONIFADE, A.A.; AL-SANE, A.A.; AL-MUSALLAM, A.A; AL-ZARBAN, S. A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. **Bioresource technology**, v. 66, n. 1, p. 1-11, 1998.

ONIFADE, A. A. A Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of 40 feathers and other keratins as livestock feed resources. **Bioresource Technology**. v. 66, p.1-11. 1998.

PEINADO, J.; FERNANDES, B.H.R. Estratégia, competências e desempenho em empresas de pet shop: evidências de um levantamento em Curitiba. **Revista de Administração**. v.47, n.4, p.609-623, 2012.

SHAH, A.; TYAGI,S.; BHARAGAVA,R.N.; BELHAJ,D.; KUMAR, K.; SAXENA, G.; SARATALE, G.D.; MULLA, S.I. **Keratin Production and Its Applications**: Current and Future Perspective. In: Keratin as a Protein Biopolymer. Springer, Cham, 2018. p. 19-34.

