

# ESTUDO PARISITOLÓGICO EM ANIMAIS DA RESERVA BIOLÓGICA DAS PEROBAS, TUNEIRAS DO OESTE, CIANOTE.

<u>Camila Gabrielle da Silva Ambrozio</u><sup>1</sup>; Aparecida Cracco<sup>2</sup>; Gustavo Lima Cardoso<sup>3</sup>; Pamela Stephani Tymniak Rezende<sup>4</sup>; Waldecy Matos da Silva Leone<sup>6</sup>;

**RESUMO:** A Reserva Biológica das Perobas, que resguarda uma das áreas de maior biodiversidade do Paraná, abrange os municípios de Tuneiras do Oeste e Cianorte, localizado no Noroeste paranaense. Nesta Reserva são encontrados diversos tipos de animais, como macaco prego, tamanduá, anta, quati, bugio, cachorro do mato, gato do mato, queixada, veado-catingueiro, entre outros. Para averiguar a saúde desses animais foi realizado exames de fezes em laboratório com objetivo de identificar parasitas intestinais utilizando métodos de identificação como o de esfregaço direto, de flutuação e sedimentação. Foi possível verificar que os animais estão sendo contaminados por diversos parasitas, como Ascaris sp., Trichuris sp., e Strongyloides sp., portanto, os resultados deste trabalho demonstram a necessidade de sensibilização da população e á necessidade de formulação e aplicação de medidas políticas para a promoção de projetos de educação sanitária e ambiental, relativa ao entorno da reserva buscando conscientizar moradores e visitantes, sobre a importância do destino adequado dos resíduos em geral, para evitar proliferação de parasitas nos animais silvestres.

PALAVRAS-CHAVE: Animais Silvestres; Reserva; Parasitoses intestinais; Verminose.

## 1. INTRODUÇÃO

No Brasil evidenciamos majestosos ecossistemas com gigantesca biodiversidade florística e faunística. Uma dela é a Reserva Biológica das Perobas, que resguarda uma das áreas de maior biodiversidade do Paraná. Foi criada em 2006, onde abrange os municípios de Tuneiras do Oeste e Cianorte, no noroeste paranaense, a 549 quilômetros de distância da capital do estado, Curitiba. A reserva abriga, ainda, as nascentes de dois afluentes do Rio Ivaí e sua área de extensão é de 8.176 hectares.

Com o avanço da agricultura e da pecuária próximo às áreas naturais, este proporciona um contato entre a população humana e seus animais domésticos com as populações de animais silvestres em seus habitat, que cada vez mais, sufoca os poucos animais que conseguem sobreviver em áreas de preservação ambiental (CORRÊA; PASSOS, 2001).

<sup>&</sup>lt;sup>1</sup>Acadêmico do Curso de Ciências Biológicas do Centro Universitário de Cesumar – UNICESUMAR, Maringá – Paraná. Programa de Bolsa de Indução (PROIND). camila\_ambrozio@hotmail.com

<sup>&</sup>lt;sup>2</sup>Técnico no laboratório de zoologia e graduada no Curso de Ciências Biológicas pelo Centro Universitário de Cesumar – UNICESUMAR, Maringá – Paraná. cidacracco@hotmail.com

<sup>&</sup>lt;sup>3</sup>Acadêmico do Curso de Ciências Biológicas do Centro Universitário de Cesumar – UNICESUMAR, Maringá – Paraná. gustavolimacardoso3@gmail.com

<sup>&</sup>lt;sup>4</sup>Acadêmico do Curso de Ciências Biológicas do Centro Universitário de Cesumar – UNICESUMAR, Maringá – Paraná. pam\_stephani@hotmail.com

<sup>&</sup>lt;sup>5</sup>Orientadora, Professora Mestre do Curso de Ciências Biológicas do Centro Universitário de Cesumar – UNICESUMAR. leonel@wnet.com.br

Como consequências dessas interações, este estreito contato facilitou a disseminação de agentes infecciosos e parasitários para novos hospedeiros e ambientes, estabelecendo-se assim novas relações entre hospedeiros e parasitas, e novos nichos ecológicos na cadeia de transmissão das doenças, (CORRÊA; PASSOS, 2001).

As parasitoses intestinais são as doenças mais comuns do globo e constituem importante problema de saúde pública. O intestino é considerado órgão de grande importância por absorver nutrientes para o corpo do animal, e com a presença de parasitas o bom funcionamento do órgão é interrompido, uma vez que estes parasitas causam desordem na microbiota intestinal e absorvem quantidades significativas de nutrientes que seriam absorvidos pelo organismo do animal, (ZACHARY, 2002).

Apesar dos cuidados oferecidos pelo parque é comum encontrar animais mortos, vitimas de atropelamento nas rodovias da região. São alguns desses animais que recolhido pelos funcionários da reserva, foram encaminhados para pesquisa, com o objetivo de analisar as fezes para identificar parasitas intestinais, e com os dados, avaliar a saúde intestinal dos animais, se estão contaminados com parasitas humanos, ou simplesmente saber se a dieta silvestre está suprindo as necessidades básicas do animal.

### 2. MATERIAL E MÉTODOS

As infecções parasitárias estão intimamente relacionadas aos alimentos e aos hábitos dos animais silvestres. A maioria das infecções parasitárias intestinais é assintomática, onde o animal tem o parasita, mas não apresenta sintomas, acometendo geralmente em animais jovens que, na maioria das vezes, encontram - se severamente parasitados. O intestino dos animais mortos vitima de atropelamento foram retirados, resfriados e aplicado os seguintes métodos de identificação de parasitas intestinais:

## 2.1 MÉTODOS DO ESFREGAÇO DIRETO

No método do esfregaço direto, é adicionada uma pequena quantidade de fezes em uma lâmina 24x24mm, e de uma a duas gotas de água esterilizada. Agita-se a lâmina para que os ovos flutuem separando dos resíduos mais pesados, adicionando uma gota de lugol. Sobre a amostra, coloca-se uma lamínula e deixa depois de 4 a 48 horas de descanso no refrigerador. Analisar a lâmina no microscópio nas objetivas de 4/0,10/0,40/0,100/0. Depois de confeccionadas e analisadas no mínimo 20 lâminas é possível detectar a maioria dos ovos ou larvas de parasitas intestinais (URGUHART, 1998).

# 2.2 MÉTODOS DE FLUTUAÇÃO

No método de flutuação, foi usada uma solução de sulfato de zinco 33,3%, em um cálice de 200 ml, onde é adicionada água destilada. Para ovos de nematoides e cestoides, utilizamos densidade 1.10 e 1.20 para a flutuação dos ovos, já os ovos de trematódeos que geralmente são mais pesados são necessários uma densidade de 1.30 a 1.35, (URGUHART, 1998).

# 2.3 MÉTODOS DE SEDIMENTAÇÃO

O método de sedimentação é usado 100 mL de água destilada e 10g de fezes, em um cálice de 200 mL, onde é colocado em uma placa de petri para analisar pequenas amostras de fezes, e posteriormente em uma lamina de 24x24mm, e uma gota de lugol.

No teste de sedimentação, permite a remoção do material particulado, mas diferente do exame de flutuação, ele tem uma pequena capacidade de concentração, (GAVIN, 2002 e URGUHART, 1998).

Através desses métodos é possível identificar parasitas habitantes do tubo digestório por produzirem ovos, larvas ou cistos que geralmente são encontrados nas fezes contidas nos intestinos parasitados por parasitas adultos, (GAVIN, 2002 e URGUHART, 1998).

#### 3. RESULTADOS E DISCUSSÃO

No presente estudo, foram analisadas as fezes de um total de cinco animais silvestres, no laboratório de parasitologia do Centro Universitário de Maringá – UNICESUMAR. Foram analisadas em microscópio óptico, 20 lâminas de cada animal estudado. As amostras foram coletadas, mantidas à refrigeração de 10°C por um período de no mínimo 24 horas e máximo de 72 horas, e foram submetidas a análises parasitológicas qualitativas para visualização de ovos, cistos, oocistos e parasitos adultos. Apresentou os seguintes resultados:

No Macaco Prego, não foram encontrado nenhum parasita, mas uma grande quantidade de restos alimentícios. No bolo fecal, também foi encontradas grandes quantidades de fibras vegetais, amido e até gotículas de gordura não digeridas. Na analise feita no Tamanduá, foram encontrados Larvas de Migrans Visceral – LMV Toxocaríase, e ovos já em estado de eclosão, sendo provocados pela migração de larvas de nematóides, principalmente por *Toxocara cati* e *Toxocara canis* no organismo humano. Os helmintos adultos vivem no trato intestinal de cães e gatos e seus ovos saem para o meio ambiente junto com as fezes dos animais parasitados. Este parasita é contraído através de ingestão acidental de ovos larvados dos vermes, juntamente com areia ou terra contaminada, vegetais crus ou pequenas guloseimas que entram em contato com o solo e posteriormente são ingeridos (SILVA, 2007).

Foram encontrado no gato do mato, ovos de *Trichuris sp.*, e *Ascaris sp.*, que se alojam no intestino grosso e delgado, que geralmente incluem parasitas de grande porte. Sua transmissão ocorre através da ingestão de ovos, que são eliminados juntamente com as fezes no qual podem sobreviver de meses a anos fora do corpo. Geralmente se alimentam do conteúdo intestinal pré-digerido (NEVES, 1998).

Na analise realizada com as fezes do Ouriço, foram detectados a presença de ovos e a forma adulta de *Strongyloides sp.*, que parasitam, em uma parte do seu desenvolvimento, a parede intestinal nos seres humanos e nos animais. A invasão no hospedeiro ocorre através de algumas vias como a pele, pelo contato direto com o solo ou coleção hídrica contaminada, através da boca por meio da ingestão de água e alimentos contaminados contendo diferentes estágios dos parasitos.

A Tabela 1 mostra os parasitas que foram encontrados nos animais estudados. Observa-se que apenas no macaco prego não houve presença de parasitas (Tabela 2).

TABELA 1 - Parasitas encontrados em Animais Silvestres da Reserva das Perobas.

| Nome Vulgar  | Parasita                            |
|--------------|-------------------------------------|
| Macaco Prego |                                     |
| Tamanduá     | <u>Larva Migrans Visceral</u> – LMV |
| Gato do Mato | Ascaris sp. / Trichuris sp.         |
| Ouriço       | Strongyloides sp                    |

## 4. CONCLUSÃO

Sabe que as parasitoses intestinais constituem um problema de saúde pública, principalmente nos países subdesenvolvidos ou em desenvolvimento. O presente estudo teve como finalidade investigar a prevalência de parasitoses intestinais nos animais da reserva, no qual foi observado que a principal entrada de endoparasitas, ocorre através da ingestão oral. Este cenário agrava-se com a ingestão de alimentos, que tenha contato com fezes parasitadas.

Portanto, há necessidade de formulação e aplicação de medidas políticas para a promoção de projetos de educação sanitária e ambiental, relativa ao entorno da reserva buscando conscientizar moradores e visitantes, sobre a importância do destino adequado dos resíduos em geral, para evitar proliferação de parasitas nos animais silvestres. São oportunos também os incentivos governamentais para a pesquisa e para o desenvolvimento de novas drogas antiparasitárias.

Os resultados deste trabalho demonstram a necessidade de sensibilização da população, frente à importância do diagnóstico dos casos positivos e a necessidade de uma maior atenção dos profissionais da área ambiental e biológica, visando estratégias de ação no controle das mesmas.

#### 5. REFERÊNCIAS

BARNES, R.D. 1984. Zoologia de invertebrados. 4ª ed. Rocca, S. Paulo. 1179 p.

CAMPOS R, BEIQUES W. Levantamento multicêntrico de parasitoses intestinais no Brasil. Os Resultados finais. Rhodia: São Paulo; 1988.

CORRÊA, S.H.R.; PASSOS, E.C. Wild animals and public health. In: FOWLER, M.E.; CUBAS, Z.S. **Biology, medicine, and surgery of South American wild animals**. Ames: lowa University Press, pág. 493-499, 2001.

CORTES, Elinor. **Parasitologia Veterinária**. Editora Ícone, 4°edição pág.: 141 a 244. São Paulo, 2004.

FARIA, S. L.; Nunes, E. M. A.; Assakawa, R. H.; Leonel, W. M. S. Levantamento das parasitoses intestinais nos municípios de Maringá e Sarandi – PR. V Encontro Internacional de Produção Científica Cesumar. 23 a 26 outubro de 2007.

GAVIN, Mc.Donald.M; ZACHARY, F. James; DUM; PHD. **Bases da Patologia em Veterinária**. 4°Edição; Rio de Janeiro ABDR, Elsevier,2002.

LAKATOS, Eva e Marconi, Marina. **Metodologia do Trabalho Científico**. SP : Atlas, 1992.

NEVES, DP. Parasitologia Humana. 11ª ed. São Paulo: Atheneu; 2005. 494 p.

NEVES, David Pereira. Parasitologia Dinâmica, São Paulo, 2ª ed, Ed. Atheneu, 2006

PESSOA S, Martins A.V. – **Parasitologia médica**. Ed Guanabara Koogan, Rio de Janeiro, 1982.

URGUHART, M. G; ARMOUR, J; DUNCAN, L. J; DUNN, M. A; JENNINGS, W. F. **Parasitologia Veterinária Segunda Edição.** 2°edição pág; 239 á 250.Guanabara Koogan. São Paulo 1998.

Divisão de Doenças de Transmissão Hídrica e Alimentar - CVE/SES-SP, com a colaboração dos alunos do I Curso de Especialização em Epidemiologia Aplicada às Doenças Transmitidas por Alimentos - Convênio CVE-SES/SP e FSP - USP, ano 2000/2001 - http://www.cve.saude.sp.gov.br/htm/hidrica/ascaristrichuris.htm - Acessado no dia 19/07/2013.