

ATIVIDADE ANTAGÔNICA DE BACTÉRIAS ENDOFÍTICAS ISOLADAS DE FOLHAS DE Trichilia elegans (MELIACEAE) COM O FITOPATÓGENO Fusarium solani

<u>Sandro Augusto Rhoden</u>¹; Adriana Garcia²; Caroline Menicoze dos Santos³; Julio Cesar Polonio⁴;João Lucio de Azevedo⁵; João Alencar Pamphile⁶

RESUMO: Microrganismos endofíticos são aqueles que colonizam o interior das plantas, sem causar danos ou doenças, conferindo vantagens ao hospedeiro, protegendo-o contra insetos e moléstias, podendo produzir substâncias de interesse biotecnológico. A Trichilia elegans A. Juss. pertence a família Meliaceae, sendo que neste gênero encontram-se 70 espécies que estão distribuídas ao longo da região tropical americana. Algumas plantas deste gênero são utilizadas de forma empírica, no tratamento de reumatismo, malária, para provocar vômito e também possuem caráter purgativo. O gênero Fusarium compreende um grupo grande e heterogêneo de fungos que provoca doenças em diversas plantas, tais como a soja (Glycine max), tabaco (Nicotiana tabacum) e feijão (Phaseolus vulgaris), reduzindo tanto a qualidade como a quantidade dos seus produtos, sendo portanto economicamente prejudicial. O objetivo neste trabalho foi avaliar a atividade antagonista in vitrode seis bactérias endofíticas isoladas de folhas de Trichilia elegans contra o fitopatógeno Fusarium solani. Disco de 6mm do fitopatógeno foi inoculado no centro da placa de Petri, e posteriormente inoculado a bactéria endofítica com duas estrias equidistantes ao fitopatógeno. No controle foi inoculado somente o fitopatógeno no centro da placa. O crescimento micelial foi aferido utilizando o programa imageJ 1.46r, de acordo com a fórmula: Im%=100-(MT/MC)x100. Os Im's foram de: 32.4% (isol. 59), 11,6% (isol. 60), 10,9% (isol. 55), 2.8 (isol. 61), já as linhagens 56 e 58 não apresentaram inibição sobre o fitopatógenos F. solani. Futuros estudos são necessários para evidenciar o real potencial no controle deste fitopatógeno.

PALAVRAS-CHAVE: Antagonismo; Bactérias endofíticas; Biotecnologia; Fusarium solani; Trichilia elegans.

1. INTRODUÇÃO

Endófitos ou microrganismos endofíticos, são aqueles que habitam o interior de plantas, em órgãos como raízes, caules, folhas e sementes. Estes microrganismos são

¹ Doutorando do Programa de Pós Graduação em Biologia Comparada – Universidade Estadual de Maringá, UEM – Maringá, Paraná. Bolsista CAPES.e-mail: sandro_ar@hotmail.com

²Doutoranda do Programa de Pós Graduação em Biologia Comparada – Universidade Estadual de Maringá, UEM.e-mail: adrianagarcia.biologa@gmail.com

³Biomédica e Estagiária do Laboratório de Biotecnologia Microbiana, Departamento de Biotecnologia, Genética e Biologia Celular - Universidade Estadual de Maringá, UEM. E-mail: carolinemenicoze@hotmail.com

⁴Acadêmico do curso de Tecnologia em Biotecnologia, Departamento de Biotecnologia, Genética e Biologia Celular - Universidade Estadual de Maringá, UEM.e-mail: julioc_polonio@hotmail.com

⁵Professor Doutor e Pesquisador visitante do Departamento de Biotecnologia, Genética e Biologia Celular - Universidade Estadual de Maringá, UEM.e-mail: jlazevedo@usp.br

⁶Orientador Professor Doutor do Departamento de Biotecnologia, Genética e Biologia Celular - Universidade Estadual de Maringá, UEM.e-mail: prof.pamphile@gmail.com

identificados como sendo fungos e bactérias que, diferentemente dos microrganismos patogênicos, não causam danos ao seu hospedeiro, pelo contrário, desempenham função importante na saúde do vegetal, atuando como controladores de organismos patogênicos e protegendo a planta contra o herbivorismo (Peixoto-neto et al., 2002).

Microrganismos endofíticos isolados de plantas medicinais ou com propriedades terapêuticas estão sendo cada vez mais estudados a partir de pressupostos de sua interação com a planta (Pileggiet al., 2002), já que muitas substâncias extraídas das plantas foram encontradas nos endofíticos que elas albergam (Azevedo et al., 2002).

Trichilia elegans A. Juss. pertence a família Meliaceae, este gênero abrange cerca de 70 espécies distribuídas ao longo da região tropical americana. Nos remanescentes florestais e nas regiões próximas a Maringá, Paraná, Brasil, três espécies de *Trichilia* podem ser encontradas: *T. catigua* A. Juss (catiguá), *T. pallida*Sw. (baga-de-morcego) e a *T. elegans* A. Juss. (pau-de-ervilha-cachuá). Estas espécies possuem uma ampla distribuição, no Sul e na América Central, sendo *T. elegans* mais abundante no Sul do Brasil (Souza et al., 2001). Algumas plantas deste gênero são utilizadas no Brasil na medicina popular para o tratamento de reumatismo, malária, para provocar vômito e também possui caráter purgativo (Garcez et al., 1996).

Segundo Peixoto-Neto et al. (2002), os microrganismos endofíticos habitam praticamente o mesmo nicho dos fitopatógenos, podendo assim controlá-los por meio de competição pelos nutrientes, produção de substâncias antagônicas, parasitando o patógeno ou mesmo induzindo a planta a desenvolver resistência. Mesmo com o acúmulo de evidências que os fungos endofíticos podem reduzir o dano causado pelos patógenos em gramíneas e outros hospedeiros, existe pouco conhecimento sobre o seu papel nos sistemas naturais, porém podem ser explorados como uma estratégia de controle biológico na agricultura (Mejia et al.,2008).

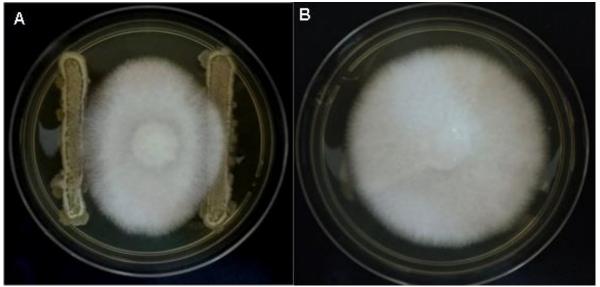
O gênero *Fusarium* compreende um grande grupo e heterogêneo de fungos que provoca doenças em diversas plantas, tais como a soja (*Glycine max*), tabaco (*Nicotiana tabacum*) e feijão (*Phaseolus vulgaris*), reduzindo tanto a qualidade como a quantidade dos seus produtos, sendo portanto economicamente prejudicial (Matarese et al., 2012). Assim este trabalho objetivou avaliar a atividade antagonística*in vitro* de bactérias endofíticas isoladas de folhas de *Trichilia elegans* contra o fitopatógeno *F. solani*.

2. MATERIAL E MÉTODOS

Foram utilizados neste trabalho seis linhagens de bactérias endofíticas (Isolados 55, 56, 58, 59,60 e 61),isoladas de folhas de *Trichilia elegans* e o fitopatógeno *F. solani*.

As bactérias endofíticas foram previamente repicadas em meio TSB (Trypticase Soy Broth) e incubadas em B.O.D. à 28°C por 24hrs.

A técnica foi realizada inoculando um disco de 6 mm de diâmetro do fitopatógeno no centro da placa de Petri, contendo meio de cultura BDA. Foram realizadas duas estrias das bactérias endofíticas, em cada lado da placa, a uma distância de dois centímetros e meio do fitopatógeno, sendo o diâmetro total da placa de 8.7 cm.


No controle foi inoculado somente o fitopatógeno, sendo que os testes foram realizados em triplicata. O índice de inibição da bactéria endofítica foi avaliado utilizando o programa image J 1.46r, pela aferição de área do fitopatógeno em comparação com a área do controle, de acordo com a fórmula: Im%= 100 - (MT/MC)x100, onde Im%= Índice de inibição em porcentagem do crescimento micelial, MT=Média da área da triplicata aferida para o tratamento em cm², e MC= Média da área da triplicata aferida para o controle em cm².

3. RESULTADOS E DISCUSSÃO

As plantas cultivadas estão sujeitas ao ataque de pragas e moléstias, prejudicando dessa forma, o seu rendimento final. Uma solução encontrada para diminuir ou sanar esses danos é a utilização de diversos produtos como inseticidas, fungicidas, herbicidas e nematicidas. Porém, o consumo exagerado desses agroquímicos causa diversos danos ao meio ambiente, às comunidades microbiológicas e ao homem. A cada dia observa-se um aumento no uso desses produtos. Diante disso, procuram-se estratégias menos agressivas para o controle biológico de pragas e doenças de inúmeras espécies cultivadas, visando maior produção e um melhor rendimento econômico. Uma alternativa para reduzir o uso de compostos químicos na agricultura vem a ser o emprego do controle biológico atribuído a outros seres vivos como os microrganismos (Peixoto-Netoet al., 2002; Azevedo et al., 2002).

Em relação às bactérias endofíticas isoladas das folhas de *Trichilia elegans*, os índices de antagonismo (Im%) foram de: 32,4% (isol. 59), 11,6% (isol. 60), 10,9% (isol. 55), 2.8 (isol. 61) já as linhagens 56 e 58 não apresentaram inibição sobre o fitopatógenos *F. solani*. Estes estudos demonstram que, das bactérias endofíticas avaliadas, o isolado 59 apresentou o maior índice de inibição (Figura 1), sugerindo assim que esses isolados podem ser promissores no controle de *F. solani*.

No controle biológico clássico, por exemplo, enquanto os fungicidas possuem um efeito temporário e necessitam de repetidas aplicações durante o ciclo das culturas, os agentes de controle biológico são capazes de se estabelecer, colonizar e dispersar no ecossistema (Ávila et al., 2005). Por isso mais estudos são necessários afim de minimizar os danos causados pelos mesmos procurando assim agentes que atuem no controle de fitopatógenos.

Figura 1: Atividade antagonística da Bactéria endofítica (isol.59) isolada de folhas de *T. elegans* contra o fitopatógeno *Fusariumsolani*. (A); Controle somente com o fitopatógeno (B).

4. CONCLUSÃO

A análise dos resultados demonstra que as bactérias endofíticas isoladas de folhas de *Trichilia elegans* foram promissoras em diferentes porcentagens na inibição do fitopatógeno *F. solani*, porém maiores estudos são necessários para avaliar o real

potencial de controle biológico destas bactérias contra este fitopatógeno, assim como forma de inoculação na planta hospedeira e avaliação da inibição *in vivo*.

5. REFERÊNCIAS

ÁVILA, Z.R., CARVALHO, S.S., BRAÚNA, L.M., GOMES, D.M.P.A., SILVA, M.C.F.; MELLO, S.C.M. Seleção de isolados de *Trichoderma* spp. antagônicos a *Sclerotium rolfsie Sclerotinia sclerotiorum*. **Embrapa Recursos Genéticos**, Brasília. 30p. (Boletim Técnico de Desenvolvimento e Pesquisa 177),2005.

AZEVEDO, J. L.; MACCHEORI, W. J.; ARAÚJO, W. L.; PEREIRA, J. O. Microrganismos endofíticos e seu papel em plantas tropicais. In: SERAFINI, L. A.; BARROS, N. M.; AZEVEDO, J. L. (Ed.). **Biotecnologia**: **Avanços na agricultura e na agroindústria,** Caxias do Sul: EDUCS, p. 233-268, 2002.

GARCEZ, F. R.; GARCEZ, W. S.; RODRIGUES, E. D.; POTT, V. J.; ROQUE, N. F. Seco-protolimonoidsfrom *Trichilia elegans*.ssp. *elegans*.**Phytochemistry**, v.42, n. 5, p.1399-1403,1996.

MATARESE F, SARROCCO S, GRUBER S, SEIDL-SEIBOTH V, VANNACCI G. Biocontrol of *Fusarium* head blight: interactions between *Trichoderma* and mycotoxigenic *Fusarium*. **Microbiology**,v.158, n. 1,p.98–106,2012.

MEJÍA, L. C.; ROJAS, E. I.; MAYNARD, Z.; BAEL, S. V.; A. ARNOLD, A. E.; HEBBAR, P.; SAMUELS, G. J.; ROBBINS, N.; HERRE, E. A. Endophytic fungi as biocontrol agents of *Theobroma cacao* pathogens. **Biological Control**, v. 46, p. 4-14, 2008.

PEIXOTO-NETO, P. A. D. S. P.; AZEVEDO, J. L.; ARAÚJO, W. L. Microrganismos endofíticos: interação com plantas e potencial biotecnológico. **Biotecnologia: Ciência & Desenvolvimento**, v. 29, p. 62-76, 2002.

PILEGGI, M.; RAIMAN, M. P.; MICHELI, A.; BEATRIZ, S.; BOBATO, V. Ação Antimicrobiana e interação endofítica em *Symphytum officinale L.*Publicatio UEPG **Biological and Health Sciences,**v. 8 n.1, p.47-55, 2002.

SOUZA, L. A. D.; MOSCHETA, S.I; MOURÃO, S. M. K; SILVÉRIO, A. Morphology and Anatomy of the Flowers of *Trichilia catigua A. Juss., T. elegans A. Juss.and T. pallidaSw.* (Meliaceae). **Brazilian Archives of Biology and Technology**, v. 44, p. 383-394, 2001.