IX EPCC – Encontro Internacional de Produção Científica UniCesumar Nov. 2015, n. 9, p. 4-8 ISBN 978-85-8084-996-7

ECONOMIA CÍCLICA NO SETOR SUCROENERGÉTICO PARANAENSE

Dione Primo Januário¹, Kelly Caroline da Silva², Thais de Oliveira Iácono Ramari², Francielli Gasparotto⁴

RESUMO: O Brasil configura-se como o maior produtor mundial de cana-de-açúcar, e o estado do Paraná é o maior produtor desta cultura na região sul do Brasil tanto em área cultivada como em produtividade. Nesse contexto, objetivou-se com este trabalho elucidar por meio de uma revisão bibliográfica a conjuntura atual do setor sucroalcooleiro no estado do Paraná, estimar a quantidade dos principais resíduos deste setor (bagaço de cana, torta de filtro e vinhaça) gerados na produção de açúcar e etanol, e relacionar a produção da bioenergia com os conceitos de economia cíclica. Existem atualmente, no estado do Paraná, 30 indústrias do setor bioenergético (usinas e destilarias). Estas são responsáveis por mais de 60 mil empregos diretos e um cultivo de 655 mil hectares, dos quais, 580 mil hectares foram cultivados exclusivamente com cana-de-acúcar destinada à produção do açúcar e do etanol. A estimativa da quantidade produzida de bagaço de cana, para a safra 2015/2016 é de 11,35 mil toneladas, para a torta de filtro é de 1,7 mil toneladas e para a vinhaça é de 20,1bilhões de litros. Um novo conceito de economia vem sendo discutido há pouco tempo no Brasil, a Economia Cíclica (EC), que busca reincorporar os materiais gerados nos processos de produção aos ciclos produtivos ou biológicos, visando à sua restauração e renovação. Ao inserirmos o setor sucroenergético aos conceitos da EC, pode ser observado que tanto etanol como o açúcar se enquadram como nutrientes tecnológicos e os subprodutos, de um modo geral, devem ser distinguidos como recursos secundários. Assim, concluiu-se que, estes tipos de estudos e ações permitem a expansão econômica das empresas deste setor, porém com um novo viés, o da produção sustentável e da propagação da energia renovável tão necessária atualmente.

PALAVRAS-CHAVE: Cana-de-açúcar, ciclos produtivos, recursos secundários.

1 INTRODUÇÃO

O Brasil configura-se como o maior produtor mundial de cana-de-açúcar, e este setor é responsável por um Produto Interno Bruto (PIB) de mais de US\$ 40 bilhões (UNICA, 2015).

Segundo dados divulgados pela CONAB (2015) foram produzidos no Brasil, na safra 2014/2015, um total de 634,8 milhões de toneladas de cana-de-açúcar, cultivadas em pouco mais de nove milhões de hectares. A região Sudeste foi responsável por 63,9% da produção nacional com o estado de São Paulo liderando o ranking, a região Centro — Oeste com 19,9% da produção e o estado de Goiás teve destaque, a região Nordeste contribuiu com 8,8% e Alagoas foi o maior produtor, 6,8% foi a proporção do Sul e o estado do Paraná produziu 99% da cana nesta região e, a região Norte com 0,6% tendo o estado do Tocantins em evidência.

O estado do Paraná é o maior produtor da cultura da cana de açúcar na região sul do Brasil tanto em área cultivada como em produtividade (CONAB, 2015). Este fato demonstra a grande influência do setor sucroenergético no agronegócio estadual. Porém, o processamento da cana-de-açúcar em açúcar ou etanol apresenta como gargalo a geração de grande quantidade de subprodutos.

Estudos recentes tem demostrado o elevado potencial desses resíduos como poluidores ambientais, mas também como matéria prima para produtos de diversos setores. Toda essa discussão tem gerado uma comoção da sociedade e da área acadêmica em prol da otimização desses processos por meio da interação entre as indústrias, o setor ambiental e o setor agrícola visando à utilização racional dos recursos naturais.

Um novo conceito de economia vem sendo discutido há pouco tempo no Brasil, e tem como foco o desenvolvimento de processos e produtos com intuito de um uso mais racional dos recursos naturais. São os conceitos de Economia Cíclica que buscam reincorporar os materiais aos ciclos produtivos ou biológicos, visando à sua restauração e renovação (RIBEIRO & KRUGLIANSKAS, 2014).

Nesse contexto, objetivou-se com este trabalho elucidar por meio de uma revisão bibliográfica a conjuntura atual do setor sucroalcooleiro no estado do Paraná, estimar a quantidade dos principais resíduos deste setor (Bagaço de cana, torta de filtro e vinhaça) gerados na produção de açúcar e etanol, e relacionar a produção da bioenergia com os conceitos de economia cíclica.

_

¹ Centro Universitário Cesumar – UniCesumar – Maringá, PR

IX EPCC – Encontro Internacional de Produção Científica UniCesumar Nov. 2015, n. 9, p. 4-8 ISBN 978-85-8084-996-7

2 MATERIAL E MÉTODOS

O presente trabalho foi realizado por meio de revisão bibliográfica, em bases de dados governamentais e não governamentais de alta credibilidade, sobre a produção de cana de açúcar no estado do Paraná, para a safra 2014/2015 e sua estimativa para a safra de 2015/16, seus principais produtos, o açúcar e o álcool combustível (etanol), a quantificação dos principais resíduos gerados para este setor, e relacionar a produção da bioenergia com os conceitos de economia cíclica.

3 RESULTADOS E DISCUSSÕES

De acordo com dados divulgados pela Associação de Produtores de Bioenergia do Estado do Paraná (ALCOPAR, 2013) existem atualmente, no estado do Paraná, 30 indústrias neste setor (usinas e destilarias). Estas são responsáveis por mais de 60 mil empregos diretos e um cultivo de 655 mil hectares (3,7% da superfície agricultável do estado), dos quais, 580 mil hectares foram cultivados exclusivamente com cana-de-açúcar destinada diretamente à moagem.

O estado do Paraná é o maior produtor da cultura da cana de açúcar na região sul do Brasil tanto em área cultivada como em produtividade (CONAB, 2015). Assim torna-se evidente que o setor sucroenergético tem grande influência no agronegócio estadual (Quadro 01).

QUADRO 01. Dados de produção, produtividade e área cultivada com a cultura da cana de açúcar dos estados

produtores, da região Sul do Brasil.

production of the region of the control of the cont										
	Área (mil ha)			Produtividade (Kg/ha)			Produção (mil t.)			
Região/UF	Safra	Safra	Var.	Safra	Safra	Var.	Safra	Safra	Var.	
	13/14	14/15	%	13/14	14/15	%	13/14	14/15	%	
SUL	587,8	636,3	8,3	71.968	67.856	5,7	42.304,2	43.179,0	2,1	
PR	586,4	635,0	8,3	72.017	67.885	5,7	42.231,0	43.105,6	2,1	
RS	1,4	1,4	5,0	51.575	54.376	5,4	73,2	73,4	0,2	

FONTE: CONAB, 2015 – Adaptado pelo autor.

De acordo com os dados do ultimo levantamento da CONAB (2015), publicado em agosto, a área total plantada para a safra 2015/16, no estado, deve alcançar 613,4 mil hectares, ocasionando uma produção total de 45,71 milhões de toneladas de cana-de-açúcar. Apesar da redução de área têm-se a perspectiva no aumento da produção em função do incremento em produtividade média que os produtores vêm obtendo ao longo desses últimos anos. A produção de açúcar e etanol foi estimada em 2,98 milhões de toneladas e 1,64 bilhão de litros (anidro e hidratado), respectivamente. A área cultivada com cana-de-açúcar para a indústria sucroenergética no estado do Paraná na safra 2012/2013 sofreu uma redução (Gráfico 01), principalmente em função da concorrência com outras culturas mais rentáveis aos proprietários que arrendam suas terras às usinas e destilarias, porém na safra de 2013/14 o setor voltou a reagir, pois o comércio do açúcar, para suprir as necessidades do mercado externo, se mostrou compensatório.

FONTE: CONAB, 2015 – Adaptado pelo autor.

IX EPCC – Encontro Internacional de Produção Científica UniCesumar Nov. 2015, n. 9, p. 4-8 ISBN 978-85-8084-996-7

De acordo com os dados de produção (CONAB, 2015) e, levando-se em consideração que o beneficiamento de uma tonelada de cana-de-açúcar gera aproximadamente 250 kg de bagaço (CORTES *et al.*, 2012), de 30 a 40 kg de torta de filtro (FIGUEIREDO E SCALA JUNIOR , 2011) e de 10 a 18 litros de vinhaça (SILVA et al., 2007), estimou-se a quantidade desses resíduos que foram gerados no Paraná, para as safras de 2013/14, 2014/2015 e que será gerado na safra 2015/2016. As estimativas da produção dos subprodutos derivados do processamento da cana de açúcar estão demonstradas na tabela 01.

Tabela 01: Estimativa da produção de resíduos de cana-de-açúcar no estado do Paraná.

Safra	Produção de cana-de- açúcar no Paraná (em	Resíduos					
	mil/t)	Bagaço (mil/t)	Torta de filtro (mil/t)	Vinhaça (em bilhão/l)			
2013/2014	42,2	10,5	1,6	18,5			
2014/2015	43,1	10,7	1,6	18,9			
2015/2016	45,7	11,35	1,7	20,1			

Fonte: Dados CONAB (2015) – adaptado pelo autor.

Assim, fica evidente que não ocorrerá aumento de produção sem que ocorra incremento na geração de resíduos. Desta forma torna-se relevante o tipo de tratamento e disposição final que vêm sendo dados a eles.

De acordo com Ribeiro & Kruglianskas (2014) o conceito de Economia Circular (EC) é atual e pouco discutido no Brasil. Trata de dividir o uso de materiais na economia em fluxos de nutrientes biológicos e de nutrientes tecnológicos. Os nutrientes biológicos devem ser reincorporados nos ciclos bio-geo-energéticos, constituindo assim um novo capital natural e os nutrientes tecnológicos devem ser projetados para retornarem com o máximo de agregação de importância em ciclos sucessivos, isto é, acumular valor no uso e em muitos reusos, evitando seu retorno à biosfera, dispostos nos aterros sanitários. Ainda segundo os autores, neste conceito os subprodutos dos processos produtivos são designados como recursos secundários e podem de alguma forma, gerar incremento financeiro e reduzir o passivo ambiental causado por eles.

Ao inserirmos o setor sucroenergético aos conceitos da EC, pode ser observado que tanto etanol como o açúcar se enquadram como nutrientes tecnológicos e os subprodutos, de um modo geral, devem ser distinguidos como recursos secundários. É neste contexto que podemos ressaltar a importância das pesquisas para uma readequação destes nutrientes biológicos, para que os mesmos possam retornar ao sistema natural e contribuir para sua restauração. Estes tipos de estudos e ações permitem a expansão econômica das empresas deste setor, porém com um novo viés, o da produção sustentável e da propagação da energia renovável tão necessária atualmente.

4 CONCLUSÃO

O setor sucroenergético no estado do Paraná é responsável por 99% da produção da cana de açúcar da região sul do Brasil, então a preocupação com a geração de subprodutos e suas destinações torna-se relevante. Assim, a sensibilização de empresários do setor bioenergético e da sociedade para os conceitos da Economia Cíclica se faz relevante tanto quanto o incentivo às pesquisas para retornar os nutrientes biológicos contidos nos recursos secundários (subprodutos) ao ambiente.

REFERÊNCIAS

ALCOPAR, Associação de Produtores de Bioenergia do Estado do Paraná. **Relatório 2013,** Maringá: Industria de Bionergia do Paraná, 2013.

CONAB, Companhia Nacional de Abastecimento. **Acompanhamento da safra brasileira de cana-de-açúcar safra 2014/2015 quarto levantamento abril/2015**. Brasília: CONAB, 2015.

CONAB, Companhia Nacional de Abastecimento. **Acompanhamento da safra brasileira de cana-de-açúcar safra 2015/2016**. V.2, n.2, 38p. Brasília: CONAB, agosto de 2015.

CORTEZ, L. et al. Principais produtos da agroindústria canavieira e sua valorização. **Revista Brasileira de Energia,** v.2, n.2, 2012.

IX EPCC – Encontro Internacional de Produção Científica UniCesumar Nov. 2015, n. 9, p. 4-8 ISBN 978-85-8084-996-7

FIGUEIREDO, E. B., SCALA JUNIOR, N. Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil. **Agriculture**, v.141, n.1/2, p.77-85, 2011.

RIBEIRO, F. M.; KRUGLIANSKAS, I. A Economia Circular no contexto Europeu: Conceitos e potenciais de contribuição na modernização das políticas de resíduos sólidos. In: XVI ENGEMA: Encontro Nacional sobre Gestão Empresarial e Meio-Ambiente, São Paulo, 2014. **Anais eletrônico**... São Paulo, 2014. Disponível em: http://www.engema.org.br/XVIENGEMA/473.pdf. Acesso em 10 de agosto de 2015.

SILVA, M. A. S., et al. Uso de vinhaça e impactos nas propriedades do solo e lençol freático. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v.11, n.1, p.108-114, 2007.

ÚNICA, , União da Indústria de Cana-de-açúcar. Imprensa 07/05/2015.

